Sparse Coding of Point Cloud Data

نویسنده

  • Alex Teichman
چکیده

Point clouds, made available through laser range finders, stereo cameras, or time of flight cameras, are frequently used in robot navigation systems. However, no unsupervised machine perception algorithm exists to provide understanding of the data; e.g. that a particular blob of points looks roughly like, say, a car. In this paper, we take steps towards such an algorithm based on sparse coding. The work here generalizes to any binary data. An algorithm for learning the bases and the activations for point cloud data is derived and demonstrated. Given precomputed basis vectors and an input vector, calculating the activations is very fast and could be used in real-time applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Cloud Dictionary: Sparse Coding and Modeling for Point Clouds

With the development of range sensors such as LIDAR and time-of-flight cameras, 3D point cloud scans have become ubiquitous in computer vision applications, the most prominent ones being gesture recognition and autonomous driving. Parsimony-based algorithms have shown great success on images and videos where data points are sampled on a regular Cartesian grid. We propose an adaptation of these ...

متن کامل

Compact RGBD Surface Models Based on Sparse Coding

In this paper, we describe a novel approach to construct compact colored 3D environment models representing local surface attributes via sparse coding. Our method decomposes a set of colored point clouds into local surface patches and encodes them based on an overcomplete dictionary. Instead of storing the entire point cloud, we store a dictionary, surface patch positions, and a sparse code des...

متن کامل

A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique

In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007